DDR400 это какой DDR

Память DDR

Double Data Rate -Synchronous DRAM, DDR — синхронная DRAM с двойной скоростью передачи данных . К сожалению , DDR- ы часто тоже называют аббревиатурой DIMM, что вызывает огромную путаницу. Т.к. тип памяти — SDRAM, еще одно название — SDRAM-II (т.е. SDRAM второго поколения). Третье название — DDR первого поколения.

По принципам работы DDR-SDRAM похожа на SDRAM. Она может принимать и передавать данные два раза за такт – на обоих фронтах тактовых импульсов (по восходящему и нисходящему фронту стробирующего сигнала), что удваивает скорость предачи данных. У DDR-SDRAM меньше потребляемая мощность (удобно для карманных компьютеров). В DDR RAM используется протокол DLL (Delay Locked Loop), позволяющий сдвинуть во времени интервал действительного значения выходных данных. Таким образом сокращаются простои системной шины при считывании данных на нее из нескольких модулей памяти.

Расшифровка названий DDR I:

PC-1600 (DDR 200) = 100MHzx2 = 1.6 Гб/с пропускная способность

PC-2100 (DDR 266) = 133MHzx2 = 2.1 Гб/с пропускная способность

PC-2400 (DDR 300) = 150MHzx2 = 2.4 Гб/с пропускная способность

PC-2700 (DDR 333) = 166MHzx2 = 2.7 Гб/с пропускная способность

PC-3000 (DDR 366) = 183MHzx2 = 3.0 Гб/с пропускная способность

PC-3200 (DDR 400) = 200MHzx2 = 3,2 Гб/с пропускная способность

PC-3500 (DDR 434) — модули HyperX DDR-памяти от Kingston

DDR SDRAM имеет только одну «прорезь» посередине, в то время как типичный 168-контактный JEDEC DIMM имеет три «прорези». Это должно послужить «зашитой от дурака», который попытается вставить DDR SDRAM в слот для обычной SDRAM.

Модули SDRAM PC66/PC100/PC133/PC150 не могут работать с DDR-материнскими платами, т.к. DDR использует новый 184-pin-овый формат модуля и физически несовместим с 168-pin-овым форматом модулей DIMM.

У канадской компании Corsair есть серия памяти XMS (Xtreme Memory Speed, память экстремальной скорости). Это т.н. супер-быстрая память. Выпускается в варианте от 512Мб на модуль, т.к. по их тестам 512Мб одним модулем оказывается быстрее, чем два по 256Мб. В т.ч. компания выпускает PC-3000 (CMX512-3000C2) со временем 2-3-3 1Т.

В апреле 2002 года компания Samsung первой выпустила 128 Мб-чипы DDR 400 SDRAM для применения в видеокартах. Они работают на частоте 800МГц (400 Мгц DDR) при напряжении 2,8 вольт.

Следует отметить, что многие ПК при установке модулей PC-2700 (и выше) в системные платы сразу не запускаются, даже при заниженных таймингах. Необходима новейшая прошивки BIOS-а. Во-вторых, очень важна проблема охлаждения модулей, работающих на такой частоте. в случае с памятью DDR400 используется новый, специальный тип корпусов для чипов, который решает проблему тепловыделения. А, например, компания OCZ на свой PC-3000 прикрепила с обеих сторон модуля по радиатору.

На начало 2002г. века память DDR-I (в просторечии — DDR) исчерпала технологические возможности наращивания тактовой частоты в экономически оправданных пределах, поэтому появился стандарт DDR-II.

DDR II. Впервые спецификация DDR-II, второго поколения памяти DDR SDRAM, была представлена в марте 2002 года во время конференции JEDEX в Калифорнии. DDR-II очень похож на DDR, но работает на 200 МГц тактовой частоте. DDR-II обратно совместим с DDR, т.е. можно использовать DDR-I память в DDR-II платах.

Первые образцы появились в конце 2002 года от компания Samsung Electronics в 60-контактном BGA-корпусе. Конструктивные отличия от DDR-I — три. Во-первых, количество контактов увеличилось с 184 до 240, т.е., почти на треть. Во-вторых, микросхемы памяти выполнены в конструктиве FBGA, а в старых модулях DDR-I использовались TSOP и TBGA. Микросхемы в упаковке FBGA работают более стабильно за счет возможности калибровки сигнальных импульсов и лучшей целостности сигнала. В-третьих, рабочее напряжение модулей уменьшено с 2,5 В (и 2,6 В для DDR 400) до 1,8 В для DDR-II. Т.о. потребляемая мощность снижена на 28%.

В рамках стандарта DDR-II выпущены-готовятся спецификации DDR II 400, DDR II 533, DDR II 667, DDR II 800 и DDR II 1000. При этом DDR II 400 сертифицировано JEDEC только исходя из интересов корейской Samsung и американской Micron-а. Все другие компании не собираются выходить на рынок с 400-МГц DDR-памятью.

Расшифровка названий DDR II:

PC2-3200 (DDR II 400) = 100MHzx4 = 3,2 Гб/с пропускная способность

PC2-4300 (DDR II 533) = 133MHzx4 = 4,3 Гб/с пропускная способность

PC2-5400 (DDR II 667) = 166MHzx4 = 3,2-5,4 Гб/с пропускная способность

PC2-6400 (DDR II 800) = 200MHzx4 = 3,2-6,4 Гб/с пропускная способность

Первой в мае 2002 года чип DDR-II представила компания Samsung, второй — в июле 2002г. компания Elpida Memory, третьим вендором стал Micron в феврале 2003г. Все модули — 512Мб.

GDDR-III (GDDR3). В первом полугодии 2003 года появились чипы памяти GDDR-III, разработанные для высокопроизводительных графических плат от компаний Micron Technology и ATI Technologies. В разработке и коммерциализации GDDR-III принимают участие NVIDIA, корейская Hynix Semiconductor, Infineon Technologies. Причина — DDR-II очень медленная для серьезных графических приложений. GDDR-III может работать также в коммуникационных устройствах и бытовой электронике.

Первоначально чипы GDDR-III имели емкость 256 Мбит, тактовую частоту 500 МГц и линейную пропускную способность 1 Гбит/с на вывод. Затем тактовые частоты выросли до 750 МГц, линейная пропускная способность – до 1,5 Гбит/с на вывод. При формировании I/O шины GDDR-III используется технология с открытым стоком (в отличие от двухтактной I/O шину у памяти для ПК) и применяется внутрикристалльная терминация (on-die termination, ODT). Несмотря на то, что спецификации GDDR-III основаны на стандарте DDR-II, это совсем другие чипы в корпусах CSP (chip-scale packaging), в 144-контактной BGA конфигурации, в отличие от 84-контактных чипов DDR-II в корпусе CSP.

Открытый стандарт памяти GDDR-III спецификаций третьего поколения DDR DRAM для графики (от ATI Technologies) существует за рамками стандартов, одобренных JEDEC Solid State Technology Association.

Читать еще:  Официальное разблокирование iPhone

DDR III . В JEDEC начата работа над спецификациями стандарта DDR-III для ПК. Пять производителей DRAM — Elpida, Hynix, Infineon, Micron и Samsung, разделили между собой основные части будущего стандарта и теперь каждая из них ведет разработку черновых спецификаций своей части.

Стандарт DDR-III в рамках JEDEC также нацелен на достижение линейной пропускной способности от 1 Гбит/с и выше.

Память DDR400 с минимальной латентностью

Автор: Александр Карабуто
Опубликовано в журнале «Компьютерра» №38 от 12 октября 2004 года.

Память DDR400 (то есть PC3200) начала использоваться в качестве системной для ПК года два назад, однако по-настоящему она расцвела на рынке лишь с утверждением спецификаций в JEDEC и выпуском двухканальных чипсетов Intel серии 875/865 и Nvidia nForce 2 Ultra 400 чуть более года назад. И сегодня уже почти любой ПК немыслим без DDR400, поскольку именно она способна обеспечить необходимый уровень пропускной способности, который требуется большинству современных центральных процессоров вкупе с периферией.

Однако пропускная способность — еще не всё. Часто от подсистемы памяти требуется и малая латентность [Отчасти именно благодаря малым задержкам при работе с памятью встроенного в процессор контроллера платформы на базе AMD Athlon 64 чувствуют себя так уверенно в сравнении с соперниками. Именно ради лучшей латентности Intel ввела в чипсет i875P функцию PAT, а многие производители старались улучшить свои продукты на чипсетах Intel 865 введением недокументированных возможностей снижения латентности чипсета при работе с памятью (так называемый режим «квази-PAT»)]. При работе контроллеров с памятью латентность можно регулировать и при помощи таймингов памяти — определенных отрезков времени, отсчитываемых в тактах сигнала опорной частоты работы памяти, которые задают ключевые интервалы времени между различными операциями при работе с памятью — установкой адреса на шине, чтением, записью и пр [Четырьмя основными таймингами работы памяти DDR SDRAM являются CAS Latency Time (принимает значения 2.0, 2.5 или 3.0 такта), RAS Precharge Delay (Trp = 2, 3 или 4 такта), RAS to CAS Delay (Trcd = 2, 3 или 4 такта) и Active Precharge Delay (Tras = 5, 6, 7 или 8 тактов). За расшифровкой предназначения этих таймингов можно обратиться, например, к статьям на www.terralab.ru/system/28953 и www.terralab.ru/system/21352 ]. Для лучшего быстродействия системы (для меньшей латентности памяти) эти тайминги лучше делать как можно меньше — настолько, насколько позволяет стабильность каждой конкретной системы. Ведь работа памяти с таймингами меньше определенных значений способна привести к сбоям и зависаниям (а то и просто неработоспособности) системы.

Продвинутые пользователи ПК и оверклокеры стараются всеми правдами и неправдами заставить память работать как можно быстрее. В ход идет как тактовая частота, так и тайминги памяти. А производители материнских плат и памяти им в этом потворствуют, позволяя менять значения таймингов в BIOS Setup плат (теперь даже у Intel!) и выпуская модули памяти, способные работать с пониженными таймингами и на повышенных частотах. Для таких пользователей у ряда производителей памяти существуют даже специальные серии модулей с низкой латентностью, среди которых в нашей стране наиболее популярны такие марки как Corsair, Kingston (серия HyperX) и OCZ. Наибольшим «шиком» считается заставить свою систему работать с таймингами 2.0-2-2-5 (Значения таймингов памяти здесь и далее перечислены в том порядке, в котором они названы выше). И именно к этому стремятся, в частности, вышеназванные изготовители модулей.

Строго говоря, по спецификациям JEDEC модули PC3200 (то есть DDR400) могут иметь значение CL=2.5 или 3.0, а значение 2.0 опциональное — оно выходит за рамки документов JEDEC, хотя и может быть использовано в продукции некоторых вендоров (см. документ JESD79D.pdf). То же самое касается и других таймингов — это, как правило, значения в 3 или 4 такта для RAS Precharge Delay и RAS to CAS Delay и строго 8 тактов для Tras (В соответствии с обновленными спецификациями JEDEC, выпущенными в январе 2004 года, различают три категории DDR400 — это самые быстрые DDR400A (тайминги 2.5-3-3-8), средние DDR400B (тайминги 3-3-3-8) и медленные DDR400C (3-4-4-8), см. документ JESD79D). Поэтому желание выпускать модули DDR400 с «паспортными» значениями таймингов 2.0-2-2-5, вообще говоря, находится в полном (то есть по всем таймингам!) противоречии со спецификациями JEDEC и по этой причине официально такие тайминги никак не могут рекомендоваться к использованию. А грамотные производители (сборщики) компьютеров просто обязаны настроить систему так, чтобы память работала с таймингами, указанными в SPD модулей (Как правило, это 3-4-4-8 для PC3200 и несколько меньше для PC2700). Впрочем, все модули памяти имеют определенный запас устойчивости и позволяют разгонять себя до меньших значений таймингов и больших частот работы. Причем многие современные материнские платы и некоторые модули PC3200 вполне работоспособны при минимальных таймингах памяти 2-2-2-5, хотя ответственность за стабильность работы такой системы целиком перекладывается на ее «настройщика».

Мы решили протестировать некоторые современные «оверклокерские» модули PC3200 на способность работать с таймингами 2.0-2-2-5 на штатных и повышенных частотах. Формальным поводом этому послужил недавний выпуск компанией Kingston (Кстати, Kingston Technology недавно была названа самым крупным независимым (third-party, то есть не производящим чипы памяти) производителем модулей памяти. По данным iSuppli Corportation, компании Kingston сейчас принадлежит 20,9% рынка модулей памяти (см. www.kingston.com/press/2004/corporate/05a.asp). Стартовав с двух сотрудников и 120 тысяч долларов годовых продаж в 1987 году, Kingston выросла до 2000 сотрудников и 1,8 млрд. долларов годовых продаж в 2003 году) новой специализированной серии модулей PC3200 линейки HyperX с ультранизкой латентностью — Ultra Low-Latency, официально рассчитанной на работу по таймингам 2-2-2-5-1(CMD) (См. www.kingston.com/press/2004/memory/07b.asp. Напомним, что обычные нерегистровые «гипериксы» KHX3200 рассчитаны на несколько большие тайминги: 2-2-3-6-1 при питании 2,6 вольт (и 2.5-3-3-7-1 для гигабайтных модулей). А модули серии KHX3500A (DDR434) при таком же питании характеризуются таймингами 2.5-3-3-7-1 для частоты 434 МГц). Эти модули, обозначающиеся суффиксом «UL» (например, KHX3200UL), рассчитаны на напряжение питания 2,7 В, используют традиционные для этой компании алюминиевые радиаторы и выпускаются с емкостью 256 и 512 Мбайт (есть и «парные» наборы для двухканальной работы). Разумеется, цены на них весьма «кусачие» (почти 180 долларов за 512 Мбайт!).

Читать еще:  Восстановление пароля аккаунта google на андроид

Модули PC3200, предназначенные для работы по таймингам 2-2-2-5, есть и у ряда других именитых производителей. Например, Corsair Memory помимо популярных CMX-3200C2 и CMX-3200LL серии eXtreme Memory Speed (XMS), гарантированно работающих на 400 МГц по таймингам 2-3-3-6 и 2-2-3-6 соответственно (для штатного питания), выпускает и более «продвинутый» их вариант — CMX-3200XL (X-treme Low latency) с таймингами 2-2-2-5 при напряжении питания 2,75 В (Аналогично и для пар модулей TwinX, см. www.corsairmemory.com/corsair/xms.html). Модули оснащены алюминиевым радиатором черного или платинового цвета (между ними и чипами памяти расположена двухсторонняя термолипучка). Жаль, купить их в России не просто, чего не скажешь о достаточно популярных у нас модулях компании OCZ Technology. В арсенале этой компании — целый выводок низколатентных модулей (см. www.ocztechnology.com/products/high_performance ), среди которых, например, OCZ EL DDR PC-3200 с таймингами 2-2-3-6 при питании 2,6 В и OCZ EL DDR PC-3500 Platinum с такими же таймингами, но уже для частоты 433 МГц (питание 2,7 В). Эти и более высокочастотные модули OCZ отлично работают и при меньших таймингах. Если модули Corsair и Kingston имеют радиаторы из алюминия, то OCZ — из меди (иногда с «золотым» или «платиновым» покрытием).

В испытаниях приняли участие модули, указанные в таблице [Модули OCZ были предоставлены компанией «Патриарх» (http://www.memory.ru )]. Мы использовали материнскую плату ASUS P4P800-E на чипсете Intel 865PE, которая лучше всего подходит для разгона по частоте и таймингами (Для чистоты эксперимента вся периферия платы, кроме дискового контроллера, дезактивировалась. Тесты на стабильность системы при экстремальных настройках проводились под Microsoft Windows XP Professional Service Pack 1 запуском специально подобранного архивирования в WinRAR и ряда ресурсоемких приложений трехмерной графики) и позволяет менять напряжение питания памяти в диапазоне от 2,55 до 2,85 В с шагом 0,1 В (Напомню, что согласно спецификациям JEDEC, штатным напряжением питания DDR400 является 2,6 В, а максимальным — 2,7 В).В таблице указана максимальная частота, при которой модули успешно прошли стресс-тесты при различных настройках напряжения и таймингов (При более высокой, чем указано в таблице, частоте работа модулей была нестабильна (наблюдались сбои) либо вообще невозможна. Заметим, что эти результаты относятся только к тем конкретным экземплярам модулей, которые побывали на наших испытаниях, и ни в коем случае не претендуют на все изделия этих производителей с указанной выше маркировкой. Тем не менее, поскольку нынешние технологии и изделия микроэлектроники, как правило, вылизываются «под завязку», наши цифры помогут дать представление о средних возможностях большинства однотипных. Делать на порядок большую выборку мы считаем принципиально бессмысленным, а тестировать 500-1000 модулей каждого производителя из разных партий — невозможным по вполне понятным причинам. Так что придется довольствоваться теми результатами, что мы имеем).

Новые модули Kingston HyperX KHX3200UL действительно лучше других участников данного сравнения оптимизированы для работы с минимальными таймингами (2-2-2-5) при штатном напряжении питания (2,6-2,7 вольт). Вместе с тем, при повышенном напряжении и не самых минимальных таймингах они уже уступают оверклокерским модулям других производителей: так, «планки» от OCZ обошли всех при работе по 2-2-2-5 и 2-2-3-5 на повышенном до 2,8 В напряжении, а модули Corsair CMX256A-3200C2 новой ревизии 4.1 показали выдающиеся результаты с таймингами 2.5-3-3-6 и 2.5-4-4-8, разогнавшись до 500 МГц. Что касается того, насколько те или иные тайминги влияют на быстродействие системы в различных приложениях, то это мной уже рассматривалось ранее (см., например, два линка в сноске 2) и при определенных условиях разрыв для разных настроек памяти может доходить до 10% (а в среднем составляет 2–4%).

Современные типы памяти DDR, DDR2, DDR3 для настольных компьютеров

В данной статье мы рассмотрим 3 вида современной оперативной памяти для настольных компьютеров:

  • DDR — является самым старым видом оперативной памяти, которую можно еще сегодня купить, но ее рассвет уже прошел, и это самый старый вид оперативной памяти, который мы рассмотрим. Вам придется найти далеко не новые материнские платы и процессоры которые используют этот вид оперативной памяти, хотя множество существующих систем используют DDR оперативную память. Рабочее напряжение DDR — 2.5 вольт (обычно увеличивается при разгоне процессора), и является наибольшим потребителем электроэнергии из рассматриваемых нами 3 видов памяти.
  • DDR2 — это наиболее распространенный вид памяти, который используется в современных компьютерах. Это не самый старый, но и не новейший вид оперативной памяти. DDR2 в общем работает быстрее чем DDR, и поэтому DDR2 имеет скорость передачи данных больше чем в предыдущей модели (самая медленная модель DDR2 по своей скорости равна самой быстрой модели DDR). DDR2 потребляет 1.8 вольт и, как в DDR, обычно увеличивается напряжение при разгоне процессора
  • DDR3 — быстрый и новый тип памяти. Опять же, DDR3 развивает скорость больше чем DDR2, и таким образом самая низкая скорость такая же как и самая быстрая скорость DDR2. DDR3 потребляет электроэнергию меньше других видов оперативной памяти. DDR3 потребляет 1.5 вольт, и немного больше при разгоне процессора

Таблица 1: Технические характеристики оперативной памяти по стандартам JEDEC

JEDEC — Joint Electron Device Engineering Council (Объединенный инженерный совет по электронным устройствам)

Важнейшей характеристикой, от которой зависит производительность памяти, является ее пропускная способность, выражающаяся как произведение частоты системной шины на объем данных, передаваемых за один такт. Современная память имеет шину шириной 64 бита (или 8 байт), поэтому пропускная способность памяти типа DDR400, составляет 400 МГц х 8 Байт = 3200 Мбайт в секунду (или 3.2 Гбайт/с). Отсюда, следует и другое обозначение памяти такого типа — PC3200. В последнее время часто используется двухканальное подключение памяти, при котором ее пропускная способность (теоретическая) удваивается. Таким образом, в случае с двумя модулями DDR400 мы получим максимально возможную скорость обмена данных 6.4 Гбайт/с.

Читать еще:  Как скопировать mbr Windows 7

Но на максимальную производительность памяти также влияет такие важный параметры как «тайминги памяти».

Известно, что логическая структура банка памяти представляет собой двумерный массив — простейшую матрицу, каждая ячейка которой имеет свой адрес, номер строки и номер столбца. Чтобы считать содержимое произвольной ячейки массива, контроллер памяти должен задать номер строки RAS (Row Adress Strobe) и номер столбца CAS (Column Adress Strobe), из которых и считываются данные. Понятно, что между подачей команды и ее выполнением всегда будет какая-то задержка (латентность памяти), вот ее-то и характеризуют эти самые тайминги. Существует множество различных параметров, которые определяют тайминги, но чаще всего используются четыре из них:

  • CAS Latency (CAS) — задержка в тактах между подачей сигнала CAS и непосредственно выдачей данных из соответствующей ячейки. Одна из важнейших характеристик любого модуля памяти;
  • RAS to CAS Delay (tRCD) — количество тактов шины памяти, которые должны пройти после подачи сигнала RAS до того, как можно будет подать сигнал CAS;
  • Row Precharge (tRP) — время закрытия страницы памяти в пределах одного банка, тратящееся на его перезарядку;
  • Activate to Precharge (tRAS) — время активности строба. Минимальное количество циклов между командой активации (RAS) и командой подзарядки (Precharge), которой заканчивается работа с этой строкой, или закрытия одного и того же банка.

Если вы увидите на модулях обозначения «2-2-2-5» или «3-4-4-7», можете не сомневаться, это упомянутые выше параметры: CAS-tRCD-tRP-tRAS.

Стандартные значения CAS Latency для памяти DDR — 2 и 2.5 такта, где CAS Latency 2 означает, что данные будут получены только через два такта после получения команды Read. В некоторых системах возможны значения 3 или 1.5, а для DDR2-800, к примеру, последняя версия стандарта JEDEC определяет этот параметр в диапазоне от 4 до 6 тактов, при том, что 4 — экстремальный вариант для отборных «оверклокерских» микросхем. Задержка RAS-CAS и RAS Precharge обычно бывает 2, 3, 4 или 5 тактов, а tRAS — чуть больше, от 5 до 15 тактов. Естественно, чем ниже эти тайминги (при одной и той же тактовой частоте), тем выше производительность памяти. Например, модуль с латентностью CAS 2,5 обычно работает лучше, чем с латентностью 3,0. Более того, в целом ряде случаев быстрее оказывается память с меньшими таймингами, работающая даже на более низкой тактовой частоте.

В таблицах 2-4 предоставлены общие скорости памяти DDR, DDR2, DDR3 и спецификации:

Системное администрирование и мониторинг Linux/Windows серверов и видео CDN

Статьи по настройке и администрированию Windows/Linux систем

  • Полезное
    • Карта сайта
    • Мой сайт-визитка
  • Рубрики
    • Linux
      • VoIP
      • Безопасность
      • Видеопотоки
      • Системы виртуализации
      • Системы мониторинга
    • Windows
    • Интересное
    • Сеть и Интернет
  • Мета
    • Войти
    • RSS Feed

Немного об оперативной памяти

Новые поколения процессоров стимулировали разработку более скоростной памяти SDRAM (Synchronous Dynamic Random Access Memory) с тактовой частотой 66 МГц, а модули памяти с такими микросхемами получили название DIMM(Dual In-line Memory Module).
Для использования с процессорами Athlon, а потом и с Pentium 4, было разработано второе поколение микросхем SDRAM — DDR SDRAM (Double Data Rate SDRAM). Технология DDR SDRAM позволяет передавать данные по обоим фронтам каждого тактового импульса, что предоставляет возможность удвоить пропускную способность памяти. При дальнейшем развитии этой технологии в микросхемах DDR2 SDRAM удалось за один тактовый импульс передавать уже 4 порции данных. Причем следует отметить, что увеличение производительности происходит за счет оптимизации процесса адресации и чтения/записи ячеек памяти, а вот тактовая частота работы запоминающей матрицы не изменяется. Поэтому общая производительность компьютера не увеличивается в два и четыре раза, а всего на десятки процентов. На рис. показаны частотные принципы работы микросхем SDRAM различных поколений.

Существуют следующие типы DIMM:

    • 72-pin SO-DIMM (Small Outline Dual In-line Memory Module) — используется для FPM DRAM (Fast Page Mode Dynamic Random Access Memory) и EDO DRAM (Extended Data Out Dynamic Random Access Memory)

    • 100-pin DIMM — используется для принтеров SDRAM (Synchronous Dynamic Random Access Memory)

    • 144-pin SO-DIMM — используется для SDR SDRAM (Single Data Rate … ) в портативних компьютерах

    • 168-pin DIMM — используется для SDR SDRAM (реже для FPM/EDO DRAM в рабочих станциях/серверах

    • 172-pin MicroDIMM — используется для DDR SDRAM (Double date rate)

    • 184-pin DIMM — используется для DDR SDRAM

    • 200-pin SO-DIMM — используется для DDR SDRAM и DDR2 SDRAM


    • 214-pin MicroDIMM — используется для DDR2 SDRAM

    • 204-pin SO-DIMM — используется для DDR3 SDRAM

    • 240-pin DIMM — используется для DDR2 SDRAM, DDR3 SDRAM и FB-DIMM (Fully Buffered) DRAM



    • 244-pin Mini-DIMM – для Mini Registered DIMM

    • 256-pin SO-DIMM — используется для DDR4 SDRAM

    • 284-pin DIMM — используется для DDR4 SDRAM

Чтобы нельзя было установить неподходящий тип DIMM-модуля, в текстолитовой плате модуля делается несколько прорезей (ключей) среди контактных площадок, а также справа и слева в зоне элементов фиксации модуля на системной плате. Для механической идентификации различных DIMM-модулей используется сдвиг положения двух ключей в текстолитовой плате модуля, расположенных среди контактных площадок. Основное назначение этих ключей — не дать установить в разъем DIMM-модуль с неподходящим напряжением питания микросхем памяти. Кроме того, расположение ключа или ключей определяет наличие или отсутствие буфера данных и т. д.

Модули DDR имеют маркировку PC. Но в отличие от SDRAM, где PC обозначало частоту работы (например PC133 – память предназначена для работы на частоте 133МГц), показатель PC в модулях DDR указывает на максимально достижимую пропускную способностью, измеряемую в мегабайтах в секунду.

Ссылка на основную публикацию
Adblock
detector